论文标题
几何系列和有限置换组中的素数
Primes in geometric series and finite permutation groups
论文作者
论文摘要
由于有限简单组的分类,$ {\ rm lm l} _n(q)$的天然程度$(q^n-1)/(q-1)$何时何时$(q^n-1)/(q-1)$是PRIME的问题。我们提出了启发式论点和计算证据,以支持一个猜想,即对于每个主要$ n \ ge 3 $,即使限制了$ q $的主要值,也有无限的这种形式的数量。
As a consequence of the classification of finite simple groups, the classification of permutation groups of prime degree is complete, apart from the question of when the natural degree $(q^n-1)/(q-1)$ of ${\rm L}_n(q)$ is prime. We present heuristic arguments and computational evidence to support a conjecture that for each prime $n\ge 3$ there are infinitely many primes of this form, even if one restricts to prime values of $q$.