论文标题

分配给算术函数的多项式系数的公式

Formulas for coefficients of polynomials assigned to arithmetic functions

论文作者

Heim, Bernhard, Neuhauser, Markus

论文摘要

我们附着在归一化的(非变化)算术函数$ g $和$ h $递归定义的多项式功能上。令$ p_0^{g,h}(x):= 1 $。然后\ begin {qore} p_n^{g,h}(x):= \ frac {x} {h(n)} \ sum_ {k = 1}^{n}^{n} g(k)\,p_ {n-k}对于特殊的$ g $和$ h $,我们获得了d'arcais polyenmials,\ end {equation}等于dedekind $η$ - 功能的$ -z $ th powers的系数,并且也由nekrasov and okounkov作为挂钩长度公式。示例由Pochhammer多项式,第二类的Chebyshev多项式以及相关的Laguerre多项式提供。我们提出了$ p_n^{g,h}(x)$系数的显式公式和身份,该系数将$ g $和$ h $的影响分开。最后,我们提供了多个应用程序。

We attach to normalized (non-vanishing) arithmetic functions $g$ and $h$ recursively defined polynomials. Let $P_0^{g,h}(x):=1$. Then \begin{equation} P_n^{g,h}(x) := \frac{x}{h(n)} \sum_{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{equation} For special $g$ and $h$, we obtain the D'Arcais polynomials, which are equal to the coefficients of the $-z$th powers of the Dedekind $η$-function and are also given by Nekrasov and Okounkov as a hook length formula. Examples are offered by Pochhammer polynomials, Chebyshev polynomials of the second kind, and associated Laguerre polynomials. We present explicit formulas and identities for the coefficients of $P_n^{g,h}(x)$ which separate the impact of $g$ and $h$. Finally, we provide several applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源