论文标题
深度有条件转换模型
Deep Conditional Transformation Models
论文作者
论文摘要
在一组功能上学习结果变量的累积分布函数(CDF)仍然具有挑战性,尤其是在高维度中。条件转换模型提供了一种半参数方法,该方法允许在没有明确的参数分布假设的情况下对大型有条件的CDF进行建模,并且只有几个参数。但是,此类中现有的估计方法的复杂性和适用性限制在非结构化数据源(例如图像或文本)上,缺乏可解释性,或者仅限于某些类型的结果。我们通过引入统一现有方法的深层条件转换模型的类别来缩小这一差距,并允许在一个整体框架中学习可解释的(非)线性模型项和更复杂的神经网络预测指标。为此,我们提出了一种新颖的网络体系结构,提供有关不同模型定义的详细信息,并得出适当的约束以及网络正则化项。我们通过数值实验和应用证明了方法的功效。
Learning the cumulative distribution function (CDF) of an outcome variable conditional on a set of features remains challenging, especially in high-dimensional settings. Conditional transformation models provide a semi-parametric approach that allows to model a large class of conditional CDFs without an explicit parametric distribution assumption and with only a few parameters. Existing estimation approaches within this class are, however, either limited in their complexity and applicability to unstructured data sources such as images or text, lack interpretability, or are restricted to certain types of outcomes. We close this gap by introducing the class of deep conditional transformation models which unifies existing approaches and allows to learn both interpretable (non-)linear model terms and more complex neural network predictors in one holistic framework. To this end we propose a novel network architecture, provide details on different model definitions and derive suitable constraints as well as network regularization terms. We demonstrate the efficacy of our approach through numerical experiments and applications.