论文标题

在复制中使用高斯流程模型的演示中的任务自适应机器人学习

Task-Adaptive Robot Learning from Demonstration with Gaussian Process Models under Replication

论文作者

Arduengo, Miguel, Colomé, Adrià, Borràs, Júlia, Sentis, Luis, Torras, Carme

论文摘要

从演示中学习(LFD)是一个范式,它允许机器人学习复杂的操纵任务,这些任务不容易被脚本脚本,但可以由人类老师展示。 LFD的挑战之一是使机器人能够获取可以适应不同情况的技能。在本文中,我们建议通过使用高斯流程(GP)模型来利用演示中的变化来实现这一目标。通过将任务参数纳入模型来增强适应性,该模型在同一任务中编码不同的规格。通过我们的公式,这些参数可以是真实的,整数的或分类的。此外,我们提出了一种GP设计,该设计利用了复制结构,即与数据中相同条件的重复演示。我们的方法大大降低了复杂任务中模型拟合的计算成本,其中复制对于获得健壮的模型至关重要。我们通过在手写字母演示数据集上的几个实验中说明了我们的方法。

Learning from Demonstration (LfD) is a paradigm that allows robots to learn complex manipulation tasks that can not be easily scripted, but can be demonstrated by a human teacher. One of the challenges of LfD is to enable robots to acquire skills that can be adapted to different scenarios. In this paper, we propose to achieve this by exploiting the variations in the demonstrations to retrieve an adaptive and robust policy, using Gaussian Process (GP) models. Adaptability is enhanced by incorporating task parameters into the model, which encode different specifications within the same task. With our formulation, these parameters can be either real, integer, or categorical. Furthermore, we propose a GP design that exploits the structure of replications, i.e., repeated demonstrations with identical conditions within data. Our method significantly reduces the computational cost of model fitting in complex tasks, where replications are essential to obtain a robust model. We illustrate our approach through several experiments on a handwritten letter demonstration dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源