论文标题
评级预测的分层文本交互
Hierarchical Text Interaction for Rating Prediction
论文作者
论文摘要
传统的推荐系统遇到了一些挑战,例如数据稀疏性和无法解释的建议。为了应对这些挑战,许多作品建议从审核数据中利用语义信息。但是,这些方法在建模文本特征和捕获文本交互的方式方面有两个主要局限性。对于文本建模,他们只需将用户/项目的所有评论串联成单个评论。但是,单词/短语级别的特征提取可以违反原始评论的含义。至于文本互动,他们将交互推迟到预测层,使它们无法捕获用户和项目之间的复杂相关性。为了解决这些局限性,我们提出了一个新型的分层文本相互作用模型(HTI),以进行评级预测。在HTI中,我们建议以层次结构对低级单词语义和高级审查表示形式进行建模。层次结构使我们能够利用不同粒度的文本特征。为了进一步捕获复杂的用户项目交互,我们建议在不同层次结构上利用每个用户项目对之间的语义相关性。在文字级别,我们提出了一种专门针对每个用户项目对的注意机制,并捕获代表每个评论的重要词。在审核级别,我们在用户和项目之间相互传播文本特征,并捕获信息丰富的评论。汇总的审查表示形式集成到用于评级预测的协作过滤框架中。在五个现实世界数据集上的实验表明,HTI的表现优于最先进的模型。进一步的案例研究提供了对HTI在不同级别的粒度上捕获语义相关的能力以进行评级预测的能力。
Traditional recommender systems encounter several challenges such as data sparsity and unexplained recommendation. To address these challenges, many works propose to exploit semantic information from review data. However, these methods have two major limitations in terms of the way to model textual features and capture textual interaction. For textual modeling, they simply concatenate all the reviews of a user/item into a single review. However, feature extraction at word/phrase level can violate the meaning of the original reviews. As for textual interaction, they defer the interactions to the prediction layer, making them fail to capture complex correlations between users and items. To address those limitations, we propose a novel Hierarchical Text Interaction model(HTI) for rating prediction. In HTI, we propose to model low-level word semantics and high-level review representations hierarchically. The hierarchy allows us to exploit textual features at different granularities. To further capture complex user-item interactions, we propose to exploit semantic correlations between each user-item pair at different hierarchies. At word level, we propose an attention mechanism specialized to each user-item pair, and capture the important words for representing each review. At review level, we mutually propagate textual features between the user and item, and capture the informative reviews. The aggregated review representations are integrated into a collaborative filtering framework for rating prediction. Experiments on five real-world datasets demonstrate that HTI outperforms state-of-the-art models by a large margin. Further case studies provide a deep insight into HTI's ability to capture semantic correlations at different levels of granularities for rating prediction.