论文标题

幻影标量场III的静态间距:渐近(a)ds解决方案

Static spacetimes haunted by a phantom scalar field III: asymptotically (A)dS solutions

论文作者

Nozawa, Masato

论文摘要

$ n(\ ge 4)$ n(\ ge 4)的静态和球形对称的解决方案 - 尺寸Einstein-phantom-scalar系统分为三个家族:(i)Fisher溶液,(ii)Ellis-Gibbons解决方案和(iii)Ellis-Bronnnikov解决方案。我们将这些溶液作为种子利用,以以引入标量场的潜力为代价产生一堆相应的渐近(A)DS空间。尽管对于每个溶液而言,每个溶液的电势都是不同的,但每个电势都以超电势范围表示,如超级强度。我们详细讨论了这些解决方案的全局结构,并阐明了每个解决方案代表黑洞/虫洞的参数域。 Ellis-Bronnikov类别的解决方案列出了球形遍布的蠕虫孔的新例子,这些虫洞可插入(超级)潜力的两个不同(a)ds的临界点。

The static and spherically symmetric solutions in $n(\ge 4)$-dimensional Einstein-phantom-scalar system fall into three family: (i) the Fisher solution, (ii) the Ellis-Gibbons solution, and (iii) the Ellis-Bronnikov solution. We exploit these solutions as seed to generate a bunch of corresponding asymptotically (A)dS spacetimes, at the price of introducing the potential of the scalar field. Despite that the potentials are different for each solution, each potential is expressed in terms of the superpotential as in supergravity. We discuss the global structure of these solutions in detail and spell out the domain of parameters under which each solution represents a black hole/wormhole. The Ellis-Bronnikov class of solutions presents novel examples of spherical traversable wormholes that interpolate two different (A)dS critical points of the (super)potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源