论文标题

在可融合组的粗嵌入中

On coarse embeddings of amenable groups into hyperbolic graphs

论文作者

Tessera, Romain

论文摘要

在本说明中,我们证明,如果有限生成的Amenable组将普通的地图接收到双曲线空间和欧几里得空间的直接乘积,那么它几乎必须是nilpotent。我们推断出一个可正约的群体会定期嵌入双曲线群体,并且仅当它实际上是nilpotent时,回答了休ume和sisto的问题。我们描述了由于查尔斯·弗朗西斯(Charles Frances)引起的洛伦兹几何形状的应用。

In this note we prove that if a finitely generated amenable group admits a regular map to a direct product of a hyperbolic space and a euclidean space, then it must be virtually nilpotent. We deduce that an amenable group regularly embeds into a hyperbolic group if and only if it is virtually nilpotent, answering a question of Hume and Sisto. We describe an application to Lorentz geometry due to Charles Frances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源