论文标题
统一的气体运动波粒方法V:双原子分子流动
Unified gas-kinetic wave-particle methods V: diatomic molecular flow
论文作者
论文摘要
在本文中,统一的气体运动波颗粒(UGKWP)方法进一步开发用于双原子气体,并在所有制度中的流动模式之间的转化和旋转模式之间的能量交换。 UGKWP中的多尺度传输机制来自离散空间中的直接建模,在该空间中,该单元的knudsen数字由粒子平均值比数值单元格大小的比率定义,从而确定了由波粒粒子制剂模拟的流动物理。 UGKWP中的非平衡分布函数由离散粒子和分析波跟踪。在不同机制中,分布式粒子和波浪的权重通过在一个时间步骤内的粒子传输和碰撞的累积进化解决方案来控制,在每个控制体积内,可区分粒子和波的可区分的宏观流动变量更新。随着局部细胞的Knudsen数量的变化,UGKWP成为高度稀有的流动状态中的一种粒子方法,并在无颗粒的连续体流量方面收敛到纳维尔 - 斯托克斯解决方案的气体运动方案(GKS)。即使针对基于离散速度方法(DVM)的统一气体运动方案(UGK)相同的解决方案,对于高速和高温流动模拟,可以将UGKWP中的计算成本和记忆要求减少多个数量级,在该数量级中,转化和旋转非平衡物在过渡和罕见的状态中很重要。结果,可以使用个人计算机进行所有机制中飞行车辆周围的3D高音计算。在各种情况下,将在各种情况下验证了diatomic气体的UGKWP方法,从一个球体上方的三维流量进行验证,并将数值溶液与参考DSMC结果和实验测量进行比较。
In this paper, the unified gas-kinetic wave-particle (UGKWP) method is further developed for diatomic gas with the energy exchange between translational and rotational modes for flow study in all regimes. The multiscale transport mechanism in UGKWP is coming from the direct modeling in a discretized space, where the cell's Knudsen number, defined by the ratio of particle mean free path over the numerical cell size, determines the flow physics simulated by the wave particle formulation. The non-equilibrium distribution function in UGKWP is tracked by the discrete particle and analytical wave. The weights of distributed particle and wave in different regimes are controlled by the accumulating evolution solution of particle transport and collision within a time step, where distinguishable macroscopic flow variables of particle and wave are updated inside each control volume. With the variation of local cell's Knudsen number, the UGKWP becomes a particle method in the highly rarefied flow regime and converges to the gas-kinetic scheme (GKS) for the Navier-Stokes solution in the continuum flow regime without particles. Even targeting on the same solution as the discrete velocity method (DVM)-based unified gas-kinetic scheme (UGKS), the computational cost and memory requirement in UGKWP could be reduced by several orders of magnitude for the high speed and high temperature flow simulation, where the translational and rotational non-equilibrium becomes important in the transition and rarefied regime. As a result, 3D hypersonic computations around a flying vehicle in all regimes can be conducted using a personal computer. The UGKWP method for diatomic gas will be validated in various cases from one dimensional shock structure to three dimensional flow over a sphere, and the numerical solutions will be compared with the reference DSMC results and experimental measurements.