论文标题
元学习的数据增强
Data Augmentation for Meta-Learning
论文作者
论文摘要
传统的图像分类器通过随机采样小批次图像进行训练。为了实现最先进的绩效,从业人员使用复杂的数据增强方案来扩展可用于抽样的培训数据量。相反,元学习算法样本支持数据,查询数据和每个训练步骤的任务。在这种复杂的采样方案中,数据扩展不仅可以用来扩大每个类可用的图像数量,还可以生成全新的类/任务。我们系统地剖析了元学习管道,并研究了在图像和类级别上可以集成数据的不同方式。我们提出的特定于元数据的数据可显着提高元式学习者在几乎没有分类基准上的性能。
Conventional image classifiers are trained by randomly sampling mini-batches of images. To achieve state-of-the-art performance, practitioners use sophisticated data augmentation schemes to expand the amount of training data available for sampling. In contrast, meta-learning algorithms sample support data, query data, and tasks on each training step. In this complex sampling scenario, data augmentation can be used not only to expand the number of images available per class, but also to generate entirely new classes/tasks. We systematically dissect the meta-learning pipeline and investigate the distinct ways in which data augmentation can be integrated at both the image and class levels. Our proposed meta-specific data augmentation significantly improves the performance of meta-learners on few-shot classification benchmarks.