论文标题

混沌动力学的数据同化

Data assimilation for chaotic dynamics

论文作者

Carrassi, Alberto, Bocquet, Marc, Demaeyer, Jonathan, Grudzien, Colin, Raanes, Patrick, Vannitsem, Stephane

论文摘要

混乱在物理系统中无处不在。对初始条件的相关敏感性是预测天气和其他地球物理流动的重要障碍。数据同化是通过模型预测和实时数据的敏锐组合减少初始条件下的不确定性的过程。本章回顾了有关混乱对数据同化方法的影响的最新发现:对于Kalman滤波器和线性系统中的更顺畅,得出了分析结果;对于基于合奏的版本和非线性动力学,数值结果提供了见解。重点是表征贝叶斯后部的渐近统计在动力学不稳定性方面,区分确定性和随机动力学。我们还提出了两个新的结果。首先,我们在混乱,耦合的大气 - 海洋模型的背景下研究了集合卡尔曼滤波器的功能,该模型与lyapunov指数的准排级频谱,表明具有足够的集合成员以跟踪所有近乎毫无记录的模式的重要性。其次,对于粒子过滤器的完全非高斯方法,进行数值实验以测试是否可以通过在几乎没有动力学生长的方向上丢弃观察结果来减轻维度的诅咒。结果反驳了此选项,很可能是因为粒子已经在混沌系统上体现了此信息。结果还表明,它是动力学不稳定的不稳定子空间的等级,而不是观察算子的级别,它决定了所需的颗粒数。我们最终讨论了随机吸引子的知识如何在与大规模分离的混乱多尺度系统的未来数据同化方案的开发中发挥作用。

Chaos is ubiquitous in physical systems. The associated sensitivity to initial conditions is a significant obstacle in forecasting the weather and other geophysical fluid flows. Data assimilation is the process whereby the uncertainty in initial conditions is reduced by the astute combination of model predictions and real-time data. This chapter reviews recent findings from investigations on the impact of chaos on data assimilation methods: for the Kalman filter and smoother in linear systems, analytic results are derived; for their ensemble-based versions and nonlinear dynamics, numerical results provide insights. The focus is on characterising the asymptotic statistics of the Bayesian posterior in terms of the dynamical instabilities, differentiating between deterministic and stochastic dynamics. We also present two novel results. Firstly, we study the functioning of the ensemble Kalman filter in the context of a chaotic, coupled, atmosphere-ocean model with a quasi-degenerate spectrum of Lyapunov exponents, showing the importance of having sufficient ensemble members to track all of the near-null modes. Secondly, for the fully non-Gaussian method of the particle filter, numerical experiments are conducted to test whether the curse of dimensionality can be mitigated by discarding observations in the directions of little dynamical growth of uncertainty. The results refute this option, most likely because the particles already embody this information on the chaotic system. The results also suggest that it is the rank of the unstable-neutral subspace of the dynamics, and not that of the observation operator, that determines the required number of particles. We finally discuss how knowledge of the random attractor can play a role in the development of future data assimilation schemes for chaotic multiscale systems with large scale separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源