论文标题

强镜星系中暗物质子结构的无针对性推断

Targeted Likelihood-Free Inference of Dark Matter Substructure in Strongly-Lensed Galaxies

论文作者

Coogan, Adam, Karchev, Konstantin, Weniger, Christoph

论文摘要

星系 - 摩尔克斯强晶状体镜头系统的光学图像的分析可以提供有关在小尺度下暗物质分布的重要信息。但是,对这些图像的建模和统计分析非常复杂,将源图像和主晶状体重建,超参数优化以及在小规模结构实现上的边缘化。我们在这里提出了一条新的分析管道,该管道通过将许多最新的机器学习发展汇总到一种连贯的方法,包括变异推理,高斯流程,可区分的概率编程以及神经可能性估算比率,来应对这些不同的挑战。我们的管道启用:(a)源图像和晶状体质量分布的快速重建,(b)不确定性的变异估计,(c)有效地优化源正则化和其他超参数,以及(d)边缘化比随机模型组成部分(如子结构的分布)。我们在这里提出的初步结果证明了我们方法的有效性。

The analysis of optical images of galaxy-galaxy strong gravitational lensing systems can provide important information about the distribution of dark matter at small scales. However, the modeling and statistical analysis of these images is extraordinarily complex, bringing together source image and main lens reconstruction, hyper-parameter optimization, and the marginalization over small-scale structure realizations. We present here a new analysis pipeline that tackles these diverse challenges by bringing together many recent machine learning developments in one coherent approach, including variational inference, Gaussian processes, differentiable probabilistic programming, and neural likelihood-to-evidence ratio estimation. Our pipeline enables: (a) fast reconstruction of the source image and lens mass distribution, (b) variational estimation of uncertainties, (c) efficient optimization of source regularization and other hyperparameters, and (d) marginalization over stochastic model components like the distribution of substructure. We present here preliminary results that demonstrate the validity of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源