论文标题

城市邻里规模的分布

Distribution of neighborhood size in cities

论文作者

Sahasranaman, Anand, Jensen, Henrik Jeldtoft

论文摘要

我们研究了整个12个全球城市中社区的分布,发现社区尺寸的分布遵循所有正在考虑的城市的指数衰减。我们能够在分析上表明,邻里大小的这种指数分布与观察到的ZIPF定律的城市规模一致。我们试图使用邻里动态模型来解释邻里大小的指数衰减的出现,在该模型中,城市内部的迁移和移动是由财富介导的。我们发现,正如经验上所观察到的那样,该模型在一系列参数规范中产生了邻域大小分布的指数衰减。使用基于比较财富的指标来评估邻里的相对吸引力,并在城市内部中介运动中具有严格的负担能力阈值是指数分布出现的必要条件。尽管由于全球耦合动力学而困难分析治疗,但我们使用一个简单的两次邻次系统来说明确切的动力学,从而产生平衡的非等量邻域大小分布。

We study the distribution of neighborhoods across a set of 12 global cities and find that the distribution of neighborhood sizes follows exponential decay across all cities under consideration. We are able to analytically show that this exponential distribution of neighbourhood sizes is consistent with the observed Zipf's Law for city sizes. We attempt to explain the emergence of exponential decay in neighbourhood size using a model of neighborhood dynamics where migration into and movement within the city are mediated by wealth. We find that, as observed empirically, the model generates exponential decay in neighborhood size distributions for a range of parameter specifications. The use of a comparative wealth-based metric to assess the relative attractiveness of a neighborhood combined with a stringent affordability threshold in mediating movement within the city are found to be necessary conditions for the the emergence of the exponential distribution. While an analytical treatment is difficult due to the globally coupled dynamics, we use a simple two-neighbourhood system to illustrate the precise dynamics yielding equilibrium non-equal neighborhood size distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源