论文标题

FedGroup:通过分解的数据驱动度量有效的聚类联合学习

FedGroup: Efficient Clustered Federated Learning via Decomposed Data-Driven Measure

论文作者

Duan, Moming, Liu, Duo, Ji, Xinyuan, Liu, Renping, Liang, Liang, Chen, Xianzhang, Tan, Yujuan

论文摘要

联合学习(FL)使多个参与的设备能够协作为全球神经网络模型做出贡献,同时在本地保留培训数据。与集中式培训环境不同,FL的非IID和不平衡(统计异质性)训练数据分布在联合网络中,这将增加本地模型与全球模型之间的分歧,从而进一步降低了性能。在本文中,我们提出了一个新颖的集群联合学习(CFL)框架FedGroup,其中我们1)根据客户的优化方向以高训练性能为基础,将客户培训分组; 2)构建一个新的数据驱动距离度量,以提高客户端聚类过程的效率。 3)基于辅助全球模型的框架可伸缩性和实用性实施新的设备冷启动机制。 FedGroup可以通过将关节优化分为子优化组来实现改进,并可以与FL Optimizer FedProx结合使用。分析了收敛性和复杂性,以证明我们提出的框架的效率。我们还评估了几个开放数据集上的FedGroup和FedGroupRox(与FedProx结合),并与相关的CFL框架进行了比较。结果表明,与FedAvg相比,FedGroup可以显着提高女权主义者的绝对测试精度 +14.1%。与FEDPROX相比,感性140的3.4% +3.4%,MNIST +6.9%与FESEM相比。

Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID and imbalanced (statistical heterogeneity) training data of FL is distributed in the federated network, which will increase the divergences between the local models and global model, further degrading performance. In this paper, we propose a novel clustered federated learning (CFL) framework FedGroup, in which we 1) group the training of clients based on the similarities between the clients' optimization directions for high training performance; 2) construct a new data-driven distance measure to improve the efficiency of the client clustering procedure. 3) implement a newcomer device cold start mechanism based on the auxiliary global model for framework scalability and practicality. FedGroup can achieve improvements by dividing joint optimization into groups of sub-optimization and can be combined with FL optimizer FedProx. The convergence and complexity are analyzed to demonstrate the efficiency of our proposed framework. We also evaluate FedGroup and FedGrouProx (combined with FedProx) on several open datasets and made comparisons with related CFL frameworks. The results show that FedGroup can significantly improve absolute test accuracy by +14.1% on FEMNIST compared to FedAvg. +3.4% on Sentiment140 compared to FedProx, +6.9% on MNIST compared to FeSEM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源