论文标题
数学单词问题的语义一致的通用树结构求解器
Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
论文作者
论文摘要
实用的自动文本数学单词问题(MWPS)求解器应该能够求解各种文本MWP,而大多数现有的作品仅专注于一个不确定的线性MWP。本文中,我们提出了一种称为通用表达树(UET)的简单但有效的方法,以首次尝试统一地表示各种MWP的方程。然后,提出了基于编码器折叠框架的语义分配的通用树结构化求解器(SAU-SOLVER),以从我们的UET表示中受益于统一模型中的多种类型的MWP。我们的sau-solver通过决定哪个符号根据生成的符号(如人类求解MWP)生成的符号来显式生成通用表达树。此外,我们的Sau-Solver还包括一个新型的子树级别的语义定位正规化,以进一步实施生成的表达树的语义约束和合理性,通过与上下文信息保持一致。最后,为了验证求解器的通用性并扩展了MWP的研究边界,我们引入了一个新的具有挑战性的混合数学单词问题数据集(HMWP),其中包括三种类型的MWP。几个MWPS数据集的实验结果表明,我们的模型可以解决通用类型的MWP,并且表现优于几个最新模型。
A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols' semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.