论文标题
一般光度距离“哈勃定律”的多极分解 - 观察宇宙学的新框架
Multipole decomposition of the general luminosity distance 'Hubble law' -- a new framework for observational cosmology
论文作者
论文摘要
我们将光度距离序列延伸到红移中的三阶,用于一般的时空,而在公制张量或处方的场方程上没有假设。事实证明,这种一般“哈勃定律”的系数可以用有限数量的物理多极系数来表示。多极项可以合并为有效方向依赖参数,以取代弗里德曼 - 莱玛\^atre-rebertson-walker(FLRW)类别类别的hubble常数,减速参数,曲率参数和“混蛋”参数。由于多极数量的有限数量,确切的各向异性哈勃定律由9、25、61的自由度给出,$ \ MATHCAL {O}(Z)$,$ \ MATHCAL {o}(Z^2)$,$ \ \ \ \ \ \ \ Mathcal {o}(z^o}(z^3)(z^3) $ z \!:= \,$ redShift。这使得模型可以独立地确定观察者宇宙邻域的动力学自由度和FLRW ANSATZ的直接测试。我们认为,一般哈勃法律的派生多极表示为观察性宇宙学中的广泛应用提供了一个新的框架。
We present the luminosity distance series expansion to third order in redshift for a general space-time with no assumption on the metric tensor or the field equations prescribing it. It turns out that the coefficients of this general 'Hubble law' can be expressed in terms of a finite number of physically interpretable multipole coefficients. The multipole terms can be combined into effective direction dependent parameters replacing the Hubble constant, deceleration parameter, curvature parameter, and 'jerk' parameter of the Friedmann-Lema\^ıtre-Robertson-Walker (FLRW) class of metrics. Due to the finite number of multipole coefficients, the exact anisotropic Hubble law is given by 9, 25, 61 degrees of freedom in the $\mathcal{O}(z)$, $\mathcal{O}(z^2)$, $\mathcal{O}(z^3)$ vicinity of the observer respectively, where $z\!:=\,$redshift. This makes possible model independent determination of dynamical degrees of freedom of the cosmic neighbourhood of the observer and direct testing of the FLRW ansatz. We argue that the derived multipole representation of the general Hubble law provides a new framework with broad applications in observational cosmology.