论文标题

使用CNN分类的轻型IoT恶意软件检测解决方案

Lightweight IoT Malware Detection Solution Using CNN Classification

论文作者

Zaza, Ahmad M. N., Kharroub, Suleiman K., Abualsaud, Khalid

论文摘要

物联网(物联网)在更多的应用中越来越频繁地使用,因为连接的设备的数量正在迅速增加。更连接的设备在可伸缩性,可维护性和最重要的安全性方面面临更大的挑战,尤其是在5G网络方面。物联网设备的安全方面是婴儿领域,这就是为什么我们在本文中的重点。多个物联网设备制造商不考虑确保出于不同原因(例如成本降低或避免使用能源收获组件)生产的设备。对手可能会利用这种潜在的恶意设备进行多次有害攻击。因此,我们开发了一个可以识别网络上特定物联网节点的恶意行为的系统。通过卷积神经网络和监视,我们能够使用可以安装在网络中的中央节点为物联网提供恶意软件检测。这项成就表明,如何将这些模型概括和应用于任何网络,同时清除有关深度学习技术的任何污名。

Internet of Things (IoT) is becoming more frequently used in more applications as the number of connected devices is in a rapid increase. More connected devices result in bigger challenges in terms of scalability, maintainability and most importantly security especially when it comes to 5G networks. The security aspect of IoT devices is an infant field, which is why it is our focus in this paper. Multiple IoT device manufacturers do not consider securing the devices they produce for different reasons like cost reduction or to avoid using energy-harvesting components. Such potentially malicious devices might be exploited by the adversary to do multiple harmful attacks. Therefore, we developed a system that can recognize malicious behavior of a specific IoT node on the network. Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network. The achievement shows how such models can be generalized and applied easily to any network while clearing out any stigma regarding deep learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源