论文标题

Semeval-2020任务12:基于变压器的多语言进攻语言标识

BRUMS at SemEval-2020 Task 12 : Transformer based Multilingual Offensive Language Identification in Social Media

论文作者

Ranasinghe, Tharindu, Hettiarachchi, Hansi

论文摘要

在本文中,我们描述了犯罪2:Semeval-2020社交媒体中的多语言进攻语言标识的团队。犯罪组织者为参与者提供了带注释的数据集,其中包含来自社交媒体的帖子,丹麦语,英语,希腊语和土耳其语。我们提出了一个多语言深度学习模型,以识别社交媒体中的冒犯性语言。总体而言,该方法可以达到可接受的评估得分,同时保持语言之间的灵活性。

In this paper, we describe the team \textit{BRUMS} entry to OffensEval 2: Multilingual Offensive Language Identification in Social Media in SemEval-2020. The OffensEval organizers provided participants with annotated datasets containing posts from social media in Arabic, Danish, English, Greek and Turkish. We present a multilingual deep learning model to identify offensive language in social media. Overall, the approach achieves acceptable evaluation scores, while maintaining flexibility between languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源