论文标题
一个不平衡数据分类的偏斜敏感评估框架
A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification
论文作者
论文摘要
不平衡数据集中的集体分配偏斜可能会导致对多数类的预测偏见的模型,从而使分类器的公平评估成为一项艰巨的任务。在这种情况下,通常用于评估分类器的预测性能等指标。但是,当课程在重要性方面变化时,这些指标不足。在本文中,我们为不平衡的数据分类提出了一个简单而通用的评估框架,该框架对阶级红衣和重要性的任意偏斜敏感。在三个不同域中在现实世界数据集上测试的几个最先进的分类器进行的实验显示了我们框架的有效性 - 不仅在评估和排名分类器方面,而且还培训了它们。
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes, making fair assessment of classifiers a challenging task. Metrics such as Balanced Accuracy are commonly used to evaluate a classifier's prediction performance under such scenarios. However, these metrics fall short when classes vary in importance. In this paper, we propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances. Experiments with several state-of-the-art classifiers tested on real-world datasets from three different domains show the effectiveness of our framework - not only in evaluating and ranking classifiers, but also training them.