论文标题
DES Y1结果:分裂生长和几何形状$λ$ CDM
DES Y1 results: Splitting growth and geometry to test $Λ$CDM
论文作者
论文摘要
我们分析了暗能量调查(DES)数据,以限制宇宙学模型,其中一个参数的子集(以$ω_m$为单位)分为与结构增长相关的版本(例如$ω_m^{\ rm grow} $)和扩展历史记录(例如$ω__m^{\ rm^{\ rm geo} $)。一旦为$λ$ CDM宇宙学模型指定了参数,该模型包括一般相对论作为重力理论,它就会唯一预测几何(距离)的演变和结构在宇宙时间内的增长。因此,几何测量和生长之间的任何不一致都可以表明该模型的分解。因此,我们的生长几何分裂方法既是超过$λ$ CDM物理学的(主要)独立于模型的测试,也可以作为表征可观察到可观察到的宇宙学信息的一种手段。我们分析了与ARXIV相同的多探针数据数据:1811.02375:DES 1(Y1)星系聚类和弱透镜,对生长和几何形状以及Y1 BAO和Y3超新星都敏感,Y1 BAO和Y3超新星,该探测的几何形状。我们还包括Boss DR12 BAO的外部几何信息和压缩的Planck 2015可能性,以及来自Boss DR12 RSD的外部增长信息。我们发现与$ω_m^{\ rm grow} =ω_m^{\ rm geo} $没有显着分歧。当分别分析DES和外部数据时,具有中微子质量和内在比对的变性限制了我们测量$ω_m^{\ rm增长} $的能力,但是将DES与外部数据结合在一起,使我们能够约束增长和几何数量。我们还考虑了一个参数化,在该参数化中,我们均分配了$ω_m$和$ W $,但是发现即使我们最限制的数据组合也无法单独约束$ω_m^{\ rm grow} $和$ w^{\ rm grow} $。相对于$λ$ CDM,分裂增长和几何形状会削弱$σ_8$的界限,但不会改变$ H $的约束。
We analyze Dark Energy Survey (DES) data to constrain a cosmological model where a subset of parameters -- focusing on $Ω_m$ -- are split into versions associated with structure growth (e.g. $Ω_m^{\rm grow}$) and expansion history (e.g. $Ω_m^{\rm geo}$). Once the parameters have been specified for the $Λ$CDM cosmological model, which includes general relativity as a theory of gravity, it uniquely predicts the evolution of both geometry (distances) and the growth of structure over cosmic time. Any inconsistency between measurements of geometry and growth could therefore indicate a breakdown of that model. Our growth-geometry split approach therefore serves as both a (largely) model-independent test for beyond-$Λ$CDM physics, and as a means to characterize how DES observables provide cosmological information. We analyze the same multi-probe DES data as arXiv:1811.02375 : DES Year 1 (Y1) galaxy clustering and weak lensing, which are sensitive to both growth and geometry, as well as Y1 BAO and Y3 supernovae, which probe geometry. We additionally include external geometric information from BOSS DR12 BAO and a compressed Planck 2015 likelihood, and external growth information from BOSS DR12 RSD. We find no significant disagreement with $Ω_m^{\rm grow}=Ω_m^{\rm geo}$. When DES and external data are analyzed separately, degeneracies with neutrino mass and intrinsic alignments limit our ability to measure $Ω_m^{\rm grow}$, but combining DES with external data allows us to constrain both growth and geometric quantities. We also consider a parameterization where we split both $Ω_m$ and $w$, but find that even our most constraining data combination is unable to separately constrain $Ω_m^{\rm grow}$ and $w^{\rm grow}$. Relative to $Λ$CDM, splitting growth and geometry weakens bounds on $σ_8$ but does not alter constraints on $h$.