论文标题

用深卷积神经网络进行全自动伤口细分

Fully Automatic Wound Segmentation with Deep Convolutional Neural Networks

论文作者

Wang, Chuanbo, Anisuzzaman, DM, Williamson, Victor, Dhar, Mrinal Kanti, Rostami, Behrouz, Niezgoda, Jeffrey, Gopalakrishnan, Sandeep, Yu, Zeyun

论文摘要

急性和慢性伤口具有不同的病因,是世界各地医疗保健系统的经济负担。预计到2024年,先进的伤口护理市场预计将超过220亿美元。伤口护理专业人员在很大程度上依赖图像和图像文档来进行适当的诊断和治疗。不幸的是,缺乏专业知识会导致伤口病因和伤口管理和文档不准确的诊断。自然图像中伤口区域的全自动分割是诊断和护理方案的重要组成部分,因为测量伤口面积并在治疗中提供定量参数至关重要。各种深度学习模型在图像分析中取得了成功,包括语义分割。特别是,由于其轻巧的体系结构和毫不妥协的性能,MobilenetV2在其他方面脱颖而出。该手稿提出了一个基于MobilenetV2的新型卷积框架,并将组件标记连接到自然图像的细分伤口区域。我们构建了一个带注释的伤口图像数据集,该数据集由来自889名患者的1,109个脚溃疡图像组成,用于训练和测试深度学习模型。我们通过对各种分割神经网络进行全面的实验和分析来证明我们方法的有效性和流动性。

Acute and chronic wounds have varying etiologies and are an economic burden to healthcare systems around the world. The advanced wound care market is expected to exceed $22 billion by 2024. Wound care professionals rely heavily on images and image documentation for proper diagnosis and treatment. Unfortunately lack of expertise can lead to improper diagnosis of wound etiology and inaccurate wound management and documentation. Fully automatic segmentation of wound areas in natural images is an important part of the diagnosis and care protocol since it is crucial to measure the area of the wound and provide quantitative parameters in the treatment. Various deep learning models have gained success in image analysis including semantic segmentation. Particularly, MobileNetV2 stands out among others due to its lightweight architecture and uncompromised performance. This manuscript proposes a novel convolutional framework based on MobileNetV2 and connected component labelling to segment wound regions from natural images. We build an annotated wound image dataset consisting of 1,109 foot ulcer images from 889 patients to train and test the deep learning models. We demonstrate the effectiveness and mobility of our method by conducting comprehensive experiments and analyses on various segmentation neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源