论文标题
卷积神经网络的行人轨迹预测
Pedestrian Trajectory Prediction with Convolutional Neural Networks
论文作者
论文摘要
预测行人的未来轨迹是一个具有挑战性的问题,它具有一系列应用,从人群监视到自动驾驶。在文献中,接近人行道轨迹预测的方法已经发展,从基于物理的模型过渡到基于复发神经网络的数据驱动模型。在这项工作中,我们提出了一种新的行人轨迹预测方法,并引入了新型的2D卷积模型。该新模型的表现优于经常性模型,并且在ETH和TRAJNET数据集上实现了最新的结果。我们还提出了一个有效的系统来表示行人位置和强大的数据增强技术,例如增加高斯噪声和随机旋转的使用,可以应用于任何模型。作为另一个探索性分析,我们提出了有关将占用方法纳入社会信息的实验结果,从经验上表明,这些方法在捕获社会互动方面无效。
Predicting the future trajectories of pedestrians is a challenging problem that has a range of application, from crowd surveillance to autonomous driving. In literature, methods to approach pedestrian trajectory prediction have evolved, transitioning from physics-based models to data-driven models based on recurrent neural networks. In this work, we propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model. This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets. We also present an effective system to represent pedestrian positions and powerful data augmentation techniques, such as the addition of Gaussian noise and the use of random rotations, which can be applied to any model. As an additional exploratory analysis, we present experimental results on the inclusion of occupancy methods to model social information, which empirically show that these methods are ineffective in capturing social interaction.