论文标题

基于衍生品的Koopman操作员,用于实时控制机器人系统

Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems

论文作者

Mamakoukas, Giorgos, Castano, Maria L., Tan, Xiaobo, Murphey, Todd D.

论文摘要

本文提出了一种可概括的方法,用于数据驱动的非线性动力学识别,该方法以预测范围和系统衍生词的幅度来界定模型误差。使用不需要知道的一般非线性动力学的高阶导数,我们构建了基于Koopman操作员的线性表示,并利用Taylor系列精度分析来得出误差绑定。所得的误差公式用于在基础函数中选择衍生物的顺序,并使用可以实时计算的封闭形式表达式获得数据驱动的Koopman模型。使用倒的摆系统,我们说明了误差的噪声界限的鲁棒性,其中未知动力学的噪声测量值是数值估计的。当与控制结合使用时,非线性系统的Koopman表示的性能比竞争的非线性建模方法(例如Sindy和Narx)更好。另外,作为线性模型,Koopman方法很容易将自己用于有效的控制设计工具,例如LQR,而其他建模方法则需要非线性控制方法。通过模拟和对尾导的机器人鱼的控制的模拟和实验结果进一步证明了该方法的功效。实验结果表明,所提出的数据驱动的控制方法的表现优于调谐的PID(比例积分衍生物)控制器,并且在网上更新数据驱动的模型可以显着提高在存在未建模的流体干扰的情况下的性能。本文配有视频:https://youtu.be/9_wx0tdta0。

This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher-order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9_wx0tdDta0.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源