论文标题

端到端的深度学习,用于使用地震心动图的可靠心脏活动监测

End-to-End Deep Learning for Reliable Cardiac Activity Monitoring using Seismocardiograms

论文作者

Suresh, Prithvi, Narayanan, Naveen, Pranav, Chakilam Vijay, Vijayaraghavan, Vineeth

论文摘要

对心脏活性的连续监测对于理解心脏的功能除了确定心房颤动等疾病的前体外,至关重要。通过连续的心脏监测,可以在实际事件发生之前检测到任何潜在疾病的早期迹象,从而及时采取预防措施。心电图(ECG)是一个既定标准,用于监测心脏在临床和非临床应用中的功能,但其基于电极的实现使其变得繁琐,尤其是对于不间断的监测。因此,我们提出了Seismonet,这是一个深层卷积神经网络,旨在提供端到端的解决方案,以从地震心动图(SCG)信号中观察到心脏活动。这些SCG信号是基于运动的,可以以简单,用户友好的方式获取。此外,尽管具有噪音缠绕的形态,但深度学习的使用仍可以直接从SCG信号中检测到R峰,并消除了提取手工制作的特征的需求。 Seismonet是在公开可用的CEBS数据集上建模的,并获得了高度敏感性和阳性预测值为0.98和0.98。

Continuous monitoring of cardiac activity is paramount to understanding the functioning of the heart in addition to identifying precursors to conditions such as Atrial Fibrillation. Through continuous cardiac monitoring, early indications of any potential disorder can be detected before the actual event, allowing timely preventive measures to be taken. Electrocardiography (ECG) is an established standard for monitoring the function of the heart for clinical and non-clinical applications, but its electrode-based implementation makes it cumbersome, especially for uninterrupted monitoring. Hence we propose SeismoNet, a Deep Convolutional Neural Network which aims to provide an end-to-end solution to robustly observe heart activity from Seismocardiogram (SCG) signals. These SCG signals are motion-based and can be acquired in an easy, user-friendly fashion. Furthermore, the use of deep learning enables the detection of R-peaks directly from SCG signals in spite of their noise-ridden morphology and obviates the need for extracting hand-crafted features. SeismoNet was modelled on the publicly available CEBS dataset and achieved a high overall Sensitivity and Positive Predictive Value of 0.98 and 0.98 respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源