论文标题
对双月机器人操纵的深层模仿学习
Deep Imitation Learning for Bimanual Robotic Manipulation
论文作者
论文摘要
我们为在连续的国家行动空间中提供了一个深厚的模仿学习框架,用于机器人双人的操纵。核心挑战是将操纵技能概括为不同位置的对象。我们假设对环境中的关系信息进行建模可以显着改善概括。为了实现这一目标,我们建议(i)将多模式动力学分解为元素运动原始基原始人,(ii)使用复发图神经网络参数化每个原始动力学以捕获相互作用,(iii)集成了序列的原始策略,该策略序列地构成了原始序列和低级控制器,以结合原始的动力学和易逆转逆转力的Kinematics。我们的模型是一个深层,分层的模块化体系结构。与基线相比,我们的模型可以更好地概括,并在几个模拟的双层机器人操纵任务上获得更高的成功率。我们为仿真,数据和模型的代码开放:https://github.com/rose-stl-lab/hdr-il。
We present a deep imitation learning framework for robotic bimanual manipulation in a continuous state-action space. A core challenge is to generalize the manipulation skills to objects in different locations. We hypothesize that modeling the relational information in the environment can significantly improve generalization. To achieve this, we propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control. Our model is a deep, hierarchical, modular architecture. Compared to baselines, our model generalizes better and achieves higher success rates on several simulated bimanual robotic manipulation tasks. We open source the code for simulation, data, and models at: https://github.com/Rose-STL-Lab/HDR-IL.