论文标题

基于零射击离群值合成和分层特征蒸馏的异常检测

Anomaly Detection based on Zero-Shot Outlier Synthesis and Hierarchical Feature Distillation

论文作者

Rivera, Adín Ramírez, Khan, Adil, Bekkouch, Imad E. I., Sheikh, Taimoor S.

论文摘要

由于异常非常罕见,异常检测患有不平衡的数据。合成生成的异常是解决此类疾病或未完全定义的数据的解决方案。但是,综合需要表达性表示,以保证生成的数据的质量。在本文中,我们提出了一个两级层次的潜在空间表示,该表示将Inliers的功能描述符(通过自动编码器)提炼成基于零量零量分布的变异分布族(通过变异自动编码器)的变异家族。从博学的潜在分布中,我们选择了那些位于培训数据郊区的人物作为合成的外部发电机。而且,我们从它们中合成它们,即产生负面样本,没有以前看过它们来训练二进制分类器。我们发现,提出的层次结构用于特征蒸馏和融合会产生强大而一般的表示,使我们能够合成伪离群样本。反过来,训练强大的二进制分类器以进行真实异常值检测(在训练过程中无需实际异常值)。我们证明了我们的提案在几个基准测试基准中的表现。

Anomaly detection suffers from unbalanced data since anomalies are quite rare. Synthetically generated anomalies are a solution to such ill or not fully defined data. However, synthesis requires an expressive representation to guarantee the quality of the generated data. In this paper, we propose a two-level hierarchical latent space representation that distills inliers' feature-descriptors (through autoencoders) into more robust representations based on a variational family of distributions (through a variational autoencoder) for zero-shot anomaly generation. From the learned latent distributions, we select those that lie on the outskirts of the training data as synthetic-outlier generators. And, we synthesize from them, i.e., generate negative samples without seen them before, to train binary classifiers. We found that the use of the proposed hierarchical structure for feature distillation and fusion creates robust and general representations that allow us to synthesize pseudo outlier samples. And in turn, train robust binary classifiers for true outlier detection (without the need for actual outliers during training). We demonstrate the performance of our proposal on several benchmarks for anomaly detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源