论文标题
自动化嵌入的结构化预测的串联
Automated Concatenation of Embeddings for Structured Prediction
论文作者
论文摘要
验证的上下文化嵌入是结构化预测任务的强大单词表示。最近的工作发现,可以通过连接不同类型的嵌入来获得更好的单词表示。但是,嵌入形成最佳串联表示形式的选择通常会因任务和候选嵌入的收集而变化,并且越来越多的嵌入类型数量使它变得更加困难。在本文中,我们提出了嵌入(ACE)的自动串联,以自动化为结构化预测任务找到更好的嵌入嵌入串联的过程,这是基于受神经体系结构搜索最近进展的启发的公式。具体而言,根据当前对任务考虑的单个嵌入类型的有效性的信念,控制器交替地对嵌入的串联进行了串联,并根据奖励更新信念。我们遵循强化学习的策略,以优化控制器的参数,并根据任务模型的准确性计算奖励,该任务模型的准确性以采样串联为输入并在任务数据集中进行了培训。 6个任务和21个数据集的经验结果表明,我们的方法在所有评估中都超过了强大的基准,并通过微调嵌入来实现最先进的性能。
Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.