论文标题

小村庄:基于层次代理的机器学习平台

HAMLET: A Hierarchical Agent-based Machine Learning Platform

论文作者

Esmaeili, Ahmad, Gallagher, John C., Springer, John A., Matson, Eric T.

论文摘要

层次多代理系统提供了方便且相关的方法来分析,建模和模拟由大量在不同抽象级别相互作用的实体组成的复杂系统。在本文中,我们介绍了基于层次多代理系统的混合机器学习平台Hamlet(基于层次的机器学习平台),以促进地理上和/或本地分布的机器学习实体的研究和民主化。提出的系统将机器学习解决方案作为超图建模,并自主根据其先天能力和学习的技能自主建立了异质代理的多层次结构。哈姆雷特(Hamlet)有助于机器学习系统的设计和管理,并为研究社区提供了分析能力,以通过灵活和可自定义的查询来评估现有和/或新的算法/数据集。所提出的混合机器学习平台不对学习算法/数据集的类型进行限制,理论上被证明是合理的,并且具有多项式计算要求。此外,对24个机器学习算法和9个标准数据集执行的120个培训和四个广义测试任务进行了经验检查。提供的实验结果不仅建立了对平台的一致性和正确性的信心,而且还证明了其测试和分析能力。

Hierarchical Multi-Agent Systems provide convenient and relevant ways to analyze, model, and simulate complex systems composed of a large number of entities that interact at different levels of abstraction. In this paper, we introduce HAMLET (Hierarchical Agent-based Machine LEarning plaTform), a hybrid machine learning platform based on hierarchical multi-agent systems, to facilitate the research and democratization of geographically and/or locally distributed machine learning entities. The proposed system models a machine learning solutions as a hypergraph and autonomously sets up a multi-level structure of heterogeneous agents based on their innate capabilities and learned skills. HAMLET aids the design and management of machine learning systems and provides analytical capabilities for research communities to assess the existing and/or new algorithms/datasets through flexible and customizable queries. The proposed hybrid machine learning platform does not assume restrictions on the type of learning algorithms/datasets and is theoretically proven to be sound and complete with polynomial computational requirements. Additionally, it is examined empirically on 120 training and four generalized batch testing tasks performed on 24 machine learning algorithms and 9 standard datasets. The provided experimental results not only establish confidence in the platform's consistency and correctness but also demonstrate its testing and analytical capacity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源