论文标题
企业网络中可扩展和动态IP相似性的图形神经网络方法
A Graph Neural Network Approach for Scalable and Dynamic IP Similarity in Enterprise Networks
论文作者
论文摘要
测量IP地址之间的相似性是任何企业网络日常操作中的重要任务。取决于IP相似性度量的应用程序包括测量安全警报之间的相关性,为行为建模的基准,调试网络故障和跟踪持续攻击。但是,根据定义,IPS没有自然的相似性度量。深度学习体系结构在这里是一个有前途的解决方案,因为它们能够直接从数据中学习IP的数值表示,从而允许在计算的表示上应用各种距离度量。当前的作品利用自然语言处理(NLP)技术来学习IP嵌入。但是,这些方法没有适当的方法来处理训练期间未见过的烟库(OOV)IP。在本文中,我们提出了一种使用适应图神经网络(GNN)体系结构的新型IP嵌入方法。这种方法具有研究原始数据,可伸缩性以及最重要的是归纳的优势,即测量以前看不见的IP之间相似性的能力。使用来自企业网络的数据,我们的方法能够确定本地DNS服务器和root DNS服务器之间的相似性,即使这些机器中的某些机器在培训阶段从未遇到过。
Measuring similarity between IP addresses is an important task in the daily operations of any enterprise network. Applications that depend on an IP similarity measure include measuring correlation between security alerts, building baselines for behavioral modelling, debugging network failures and tracking persistent attacks. However, IPs do not have a natural similarity measure by definition. Deep Learning architectures are a promising solution here since they are able to learn numerical representations for IPs directly from data, allowing various distance measures to be applied on the calculated representations. Current works have utilized Natural Language Processing (NLP) techniques for learning IP embeddings. However, these approaches have no proper way to handle out-of-vocabulary (OOV) IPs not seen during training. In this paper, we propose a novel approach for IP embedding using an adapted graph neural network (GNN) architecture. This approach has the advantages of working on the raw data, scalability and, most importantly, induction, i.e. the ability to measure similarity between previously unseen IPs. Using data from an enterprise network, our approach is able to identify similarities between local DNS servers and root DNS servers even though some of these machines are never encountered during the training phase.