论文标题

计算大型网络上的动态用户平衡,而不知道全局参数

Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters

论文作者

Thong, Duong Viet, Gibali, Aviv, Staudigl, Mathias, Vuong, Phan Tu

论文摘要

动态用户平衡(欠款)是一种类似NASH的解决方案概念,描述了在固定的计划期内动态交通系统中的平衡。到期是一类挑战性的平衡问题,在一个简洁的数学框架中连接了网络加载模型和系统平衡的概念。最近,弗里斯(Friesz)和汉(Han)引入了一个集成框架,用于在大规模网络上进行适当计算,其中包含一种基本的固定点算法,用于有效计算。在同一工作中,他们提出了一个开源MATLAB工具箱,该工具箱使研究人员可以测试和验证新的数值求解器。本文以这种开创性的贡献为基础,并以几种重要的方式扩展了它。在概念层面上,我们提供了新的强收敛算法,旨在直接在路径流的无限维空间中计算到应有的算法。我们算法的一个重要特征是,它们在不了解全球参数的情况下提供可证明的融合保证。实际上,我们提出的算法是自适应的,因为它们不需要对延迟运算符的全局参数的先验知识,并且即使对于非单调的延迟操作员,它们也是可证明的。我们在标准测试实例上实施了数值方案,并将其与Friesz和Han采用的数值解决方案策略进行了比较。

Dynamic user equilibrium (DUE) is a Nash-like solution concept describing an equilibrium in dynamic traffic systems over a fixed planning period. DUE is a challenging class of equilibrium problems, connecting network loading models and notions of system equilibrium in one concise mathematical framework. Recently, Friesz and Han introduced an integrated framework for DUE computation on large-scale networks, featuring a basic fixed-point algorithm for the effective computation of DUE. In the same work, they present an open-source MATLAB toolbox which allows researchers to test and validate new numerical solvers. This paper builds on this seminal contribution, and extends it in several important ways. At a conceptual level, we provide new strongly convergent algorithms designed to compute a DUE directly in the infinite-dimensional space of path flows. An important feature of our algorithms is that they give provable convergence guarantees without knowledge of global parameters. In fact, the algorithms we propose are adaptive, in the sense that they do not need a priori knowledge of global parameters of the delay operator, and which are provable convergent even for delay operators which are non-monotone. We implement our numerical schemes on standard test instances, and compare them with the numerical solution strategy employed by Friesz and Han.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源