论文标题
流行病:在流行病学模型中优化控制策略的工具箱
EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models
论文作者
论文摘要
流行病学家对流行病的动力学进行建模,以提出基于药物和非药物干预措施(接触限制,锁定,疫苗接种等)的控制策略。由于可能的干预措施数量和预测长期影响的困难,因此手工设计此类策略并不是微不足道的。该任务可以作为优化问题,在这种优化问题中,最先进的机器学习算法(例如深度强化学习)可能会带来巨大的价值。但是,每个领域的特异性(流行性建模或解决优化问题)需要来自不同专业领域的研究人员之间的强大合作。 这就是为什么我们介绍Epidemioptim,这是一种Python工具箱,可促进研究人员在流行病学和优化方面的合作。 Epidemioptim通过优化从业人员(OpenAI Gym)常用的标准接口将流行病学模型和成本功能转化为优化问题。使用深神经网络(DQN)和进化算法(NSGA-II)基于Q学习的强化学习算法已经实施。我们说明了在使用易感性暴露于covid-19的易感性暴露于易感性的(SEIR)模型的情况下,使用流行病来寻找动态锁定锁定控制的最佳策略。流行病学家,优化从业人员和其他人(例如,经济学家)使用Epidemioptim及其交互式可视化平台,可以轻松地比较流行病学模型,成本功能和优化算法,以解决卫生决策者做出的重要选择。
Epidemiologists model the dynamics of epidemics in order to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation, lock down, vaccination, etc). Hand-designing such strategies is not trivial because of the number of possible interventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning algorithms such as deep reinforcement learning, might bring significant value. However, the specificity of each domain -- epidemic modelling or solving optimization problem -- requires strong collaborations between researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers in epidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on Q-Learning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies for dynamical on-off lock-down control under the optimization of death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choices to be made by health decision-makers.