论文标题

半纤维类别类别

Semibricks in extriangulated categories

论文作者

Wang, Li, Wei, Jiaqun, Zhang, Haicheng

论文摘要

令$ \ mathcal {x} $为外部策略类别$ \ mathscr {c} $中的半成品。令$ \ mathcal {t} $为$ \ Mathcal {x} $生成的过滤子类别。我们在$ \ mathscr {c} $中给出了简单的半键和长度宽子类别之间的一对一对应关系。这概括了Ringel在模块类别中给出的两者,该模块类别已通过Inomoto推广到确切类别。此外,我们还在$ \ Mathcal {t} $的cotorsion对与$ \ Mathcal {x} $的某些子集之间提供一对一的对应关系。应用于三角形类别的简单智力系统,我们恢复了Dugas给出的结果。

Let $\mathcal{X}$ be a semibrick in an extriangulated category $\mathscr{C}$. Let $\mathcal{T}$ be the filtration subcategory generated by $\mathcal{X}$. We give a one-to-one correspondence between simple semibricks and length wide subcategories in $\mathscr{C}$. This generalizes a bijection given by Ringel in module categories, which has been generalized by Enomoto to exact categories. Moreover, we also give a one-to-one correspondence between cotorsion pairs in $\mathcal{T}$ and certain subsets of $\mathcal{X}$. Applying to the simple minded systems of an triangulated category, we recover a result given by Dugas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源