论文标题

轻巧的动态图形卷积网络,用于AMR到文本生成

Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation

论文作者

Zhang, Yan, Guo, Zhijiang, Teng, Zhiyang, Lu, Wei, Cohen, Shay B., Liu, Zuozhu, Bing, Lidong

论文摘要

AMR到文本的生成用于将抽象含义表示结构(AMR)传递到文本中。此任务的关键挑战是有效学习有效的图表表示。以前,图形卷积网络(GCN)用于编码输入AMR,但是,香草GCN无法捕获非本地信息,此外,它们遵循局部(一阶)信息聚合方案。为了解决这些问题,需要更大,更深的GCN模型来捕获更复杂的相互作用。在本文中,我们引入了动态融合机制,提出了轻巧的动态图卷积网络(LDGCN),该网络通过从输入图中综合高阶信息来捕获更丰富的非本地相互作用。我们进一步基于组图的卷积和重量与卷积相结合,以减少记忆使用情况和建模复杂性。在这些策略的帮助下,我们能够在保持模型容量的同时培训具有更少参数的模型。实验表明,在两个基准数据集上,LDGCN胜过最先进的模型,用于AMR到文本生成,参数较少。

AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源