论文标题
几乎常规超图中几乎完美匹配的大小的新界限
New bounds on the size of Nearly Perfect Matchings in almost regular hypergraphs
论文作者
论文摘要
令$ h $为$ k $均匀的$ d $ d $ - $ n $顶点上的简单超图。基于对RödlNibble的分析,Alon,Kim和Spencer(1997)证明,如果$ k \ ge 3 $,则$ h $包含匹配的覆盖,除非$ nd^{ - 1/(k-1)+O(k-1)+O(1)} $ VERTICES,并且问该边界是否紧密。在本文中,我们通过表明所有$ k> 3 $,$ h $包含一个匹配的覆盖范围,最多最多$ nd^{ - 1/(k-1)-h} $ vertices,对于某些$η=θ(k^{ - 3})> 0 $,当$ n $ n $ n $ n $和$ d $足够大。我们的方法包括表明Rödl的nibble过程不仅构建了较大的匹配,而且还会产生许多分布良好的“增强星”,然后可以将其用于显着改善RödlNibble过程构建的匹配。基于这一点,我们还改善了Kostochka和Rödl(1998)和Vu(2000)的结果,对几乎常规的Hypergraphs的匹配大小和小型Codegree的大小。结果,我们在与一般参数的组合设计中的大型匹配大小上提高了最著名的界限。最后,我们将Molloy and Reed(2000)的界限提高了具有小型代码的HyperGraphs的色素指数(可以应用于Steiner Triple Systems和更一般的一般设计的色度指数上最著名的界限)。
Let $H$ be a $k$-uniform $D$-regular simple hypergraph on $N$ vertices. Based on an analysis of the Rödl nibble, Alon, Kim and Spencer (1997) proved that if $k \ge 3$, then $H$ contains a matching covering all but at most $ND^{-1/(k-1)+o(1)}$ vertices, and asked whether this bound is tight. In this paper we improve their bound by showing that for all $k > 3$, $H$ contains a matching covering all but at most $ND^{-1/(k-1)-η}$ vertices for some $η= Θ(k^{-3}) > 0$, when $N$ and $D$ are sufficiently large. Our approach consists of showing that the Rödl nibble process not only constructs a large matching but it also produces many well-distributed `augmenting stars' which can then be used to significantly improve the matching constructed by the Rödl nibble process. Based on this, we also improve the results of Kostochka and Rödl (1998) and Vu (2000) on the size of matchings in almost regular hypergraphs with small codegree. As a consequence, we improve the best known bounds on the size of large matchings in combinatorial designs with general parameters. Finally, we improve the bounds of Molloy and Reed (2000) on the chromatic index of hypergraphs with small codegree (which can be applied to improve the best known bounds on the chromatic index of Steiner triple systems and more general designs).