论文标题

微波炉诱导的涡流传输循环以进行信号隔离

Circulation by microwave-induced vortex transport for signal isolation

论文作者

Richman, Brittany, Taylor, Jacob M.

论文摘要

磁场打破了时间反转对称性,在许多情况下都利用了时间来对称,以实现光的非偏置行为。这是循环器和其他微波和光学设置中使用的其他元素的核心物理。微波域中的商业循环器通常使用铁磁材料和波浪干扰,需要大型设备和大型磁场。但是,用于传感和计算的量子信息设备需要较小的尺寸,较低的字段和更好的芯片集成。通过使用约瑟夫森交界处连接的超导岛的阵列,可以在低得多的磁场上实现与铁磁序的等效性(例如XY模型)。在这里,我们表明,单个涡流在这种阵列中的量子连接运动足以诱导非肾脏行为,从而在非常低的磁场和与qubits相关的微波频率下具有小规模,中等宽度和低插入损失循环器。

Magnetic fields break time-reversal symmetry, which is leveraged in many settings to enable the nonreciprocal behavior of light. This is the core physics of circulators and other elements used in a variety of microwave and optical settings. Commercial circulators in the microwave domain typically use ferromagnetic materials and wave interference, requiring large devices and large fields. However, quantum information devices for sensing and computation require small sizes, lower fields, and better on-chip integration. Equivalences to ferromagnetic order -- such as the XY model -- can be realized at much lower magnetic fields by using arrays of superconducting islands connected by Josephson junctions. Here we show that the quantum-coherent motion of a single vortex in such an array suffices to induce nonreciprocal behavior, enabling a small-scale, moderate-bandwidth, and low insertion loss circulator at very low magnetic fields and at microwave frequencies relevant for experiments with qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源