论文标题

Hermite-Hadamard不平等现象进行了重新审视:一些新的证明和申请

The Hermite-Hadamard inequality revisited: Some new proofs and applications

论文作者

Aliev, Ilham A., Tamar, Mehmet E., Sekin, Cagla

论文摘要

提出了经典的Hermite-Hadamard不平等现象的新证据,并给出了几种应用,包括Hadamard类型的不等式的功能,其衍生物具有拐点或衍生物为凸的功能。此外,在功能的第一瞬间,某些估计值$%f:[a,b] \ rightarrow%tcimaCro {\ u {\ u {211d}}%%%beginexpansion \ mathbb {r}%end end Extexpansion ail central centment $ C =(a+b)/2 $ f:[0,\ infty)\ rightarrow(0,\ infty)$。

New proofs of the classical Hermite-Hadamard inequality are presented and several applications are given, including Hadamard-type inequalities for the functions, whose derivatives have inflection points or whose derivatives are convex. Morever, some estimates from below and above for the first moments of functions $% f:[a,b]\rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ about the center point $c=(a+b)/2$ are obtained and the reverse Hardy inequality for convex functions $f:[0,\infty )\rightarrow (0,\infty )$ is established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源