论文标题

图形表结石及其猜想合成

Graphical Calculi and their Conjecture Synthesis

论文作者

Miller-Bakewell, Hector

论文摘要

事实证明,分类量子力学,尤其是图形微积分是一种直观而有力的量子计算方法。这项工作通过研究我们标记的代数结构,继续探索量子计算设置内部和外部的图形分解。最初的目的是猜想的综合。创建定理的算法过程。在此过程中,我们介绍了一个概括步骤,该步骤本身需要推断和验证定理的参数化家族的能力。本论文引入了这种推理和验证框架,以实现图形微积分与代数几何和加洛伊斯理论等领域之间的新联系。这些框架启发了对图形微积分设计的进一步研究,我们在这里介绍了两个重要的新结石。首先是微积分环,它是基于环的Qubit图形微积分的最初,进而启发了相位同态对的引入和分类。第二个是微积分ZQ,这是一种自然表达任意量子旋转的边缘装饰的演算,消除了对非线性规则(例如ZX的(EU))的需求。预计这些结果将用于创建量子计算的优化方案和中间表示的人,对创建新图形计算的人以及那些执行猜想合成的人。

Categorical Quantum Mechanics, and graphical calculi in particular, has proven to be an intuitive and powerful way to reason about quantum computing. This work continues the exploration of graphical calculi, inside and outside of the quantum computing setting, by investigating the algebraic structures with which we label diagrams. The initial aim for this was Conjecture Synthesis; the algorithmic process of creating theorems. To this process we introduce a generalisation step, which itself requires the ability to infer and then verify parameterised families of theorems. This thesis introduces such inference and verification frameworks, in doing so forging novel links between graphical calculi and fields such as Algebraic Geometry and Galois Theory. These frameworks inspired further research into the design of graphical calculi, and we introduce two important new calculi here. First is the calculus RING, which is initial among ring-based qubit graphical calculi, and in turn inspired the introduction and classification of phase homomorphism pairs also presented here. The second is the calculus ZQ, an edge-decorated calculus which naturally expresses arbitrary qubit rotations, eliminating the need for non-linear rules such as (EU) of ZX. It is expected that these results will be of use to those creating optimisation schemes and intermediate representations for quantum computing, to those creating new graphical calculi, and for those performing conjecture synthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源