论文标题
当前离子陷阱量子处理器上有效的非结构化搜索实现
Efficient unstructured search implementation on current ion-trap quantum processors
论文作者
论文摘要
到目前为止,只有3个量子空间上的结果(量子处理器的超导和离子陷阱实现)都在两种设置中使用最佳协议的预期oracle调用数量击败了经典的非结构化搜索。我们提出了在离子捕获的量子处理器上定义的4、5和6量子位的空间中运行非结构化搜索的实验结果。我们的最佳电路分别获得了66 \%,26 \%和6 \%的平均概率测量标记元素。在4和5量子空间的情况下,我们获得的甲骨文呼叫的预期数量比任何经典方法所需的甲骨文呼叫数量少。对于第一次在实验中证明的作者知识,Grover在这些Qubit计数上的理论结果的生存能力是。同样在6 QUAT的情况下,使用单个Oracle调用的电路返回了超过任何可能的经典方法的成功概率。这些结果是使用多种非结构化搜索算法以及减少纠缠大门数量的最新发展而实现的。目前,后者被认为是量子计算中错误的主要来源。通过使用中路测量结果,其中一些改进已成为可能。据我们所知,后一个功能目前仅在我们运行的H0量子处理器上可用。
So far, only the results on 3 qubit spaces (both on superconducting and ion-trap realisations of quantum processors) have beaten the classical unstructured search in the expected number of oracle calls using optimal protocols in both settings. We present experimental results on running unstructured search in spaces defined by 4, 5 and 6 qubits on ion-trapped quantum processor. Our best circuits obtained respectively 66\%, 26\% and 6\% average probability of measuring the marked element. In the case of 4 and 5 qubit spaces we obtained fewer expected number of oracle calls required to find a marked element than any classical approach. Viability of the theoretical result by Grover at these qubit counts is, to authors' knowledge demonstrated experimentally for the first time. Also at 6 qubits, a circuit using a single oracle call returned a measured probability of success exceeding any possible classical approach. These results were achieved using a variety of unstructured search algorithms in conjunction with recent developments in reducing the number of entangling gates. The latter are currently considered to be a dominating source of errors in quantum computations. Some of these improvements have been made possible by using mid-circuit measurements. To our knowledge the latter feature is currently available only on the H0 quantum processor we run on.