论文标题

几乎理性的管道的Instanton Floer同源

Instanton Floer homology of almost-rational plumbings

论文作者

Alfieri, Antonio, Baldwin, John A., Dai, Irving, Sivek, Steven

论文摘要

我们表明,如果$ y $是几乎理性的管道的边界,那么框架的intsanton floer同源$ \ smash {i^\#(y)} $对Heegaard floer同源$ \ smash {\ smash {\ wideHat {\ wideHat {\ mathit {\ mathit {hf}}(y mathbb})这类3个manifolds包括所有带有Orbifold $ s^2 $的Seifert纤维纤维合理同源球(我们为其余的Seifert纤维纤维合理同源性领域$ \ UNICODE $ \ UNICODE {X2014} $建立了同构,其基础$ \ unicode {x2014} $ base $ \ nathbb {rp}^rp {rp}^2 $ \ uniCode = uniCode = uniCode {x2014141411414141414141414141411414141414141414141414144144岁。我们的证明利用了晶格同源性,并依靠Baldwin和Sivek最近建立的Instanton Floer Coobordism Maps的分解定理。

We show that if $Y$ is the boundary of an almost-rational plumbing, then the framed instanton Floer homology $\smash{I^\#(Y)}$ is isomorphic to the Heegaard Floer homology $\smash{\widehat{\mathit{HF}}(Y; \mathbb{C})}$. This class of 3-manifolds includes all Seifert fibered rational homology spheres with base orbifold $S^2$ (we establish the isomorphism for the remaining Seifert fibered rational homology spheres$\unicode{x2014}$with base $\mathbb{RP}^2$$\unicode{x2014}$directly). Our proof utilizes lattice homology, and relies on a decomposition theorem for instanton Floer cobordism maps recently established by Baldwin and Sivek.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源