论文标题

3D卷积序列到序列模型的椎骨压缩骨折鉴定CT

3D Convolutional Sequence to Sequence Model for Vertebral Compression Fractures Identification in CT

论文作者

Chettrit, David, Meir, Tomer, Lebel, Hila, Orlovsky, Mila, Gordon, Ronen, Akselrod-Ballin, Ayelet, Bar, Amir

论文摘要

与骨质疏松相关的骨折每三秒钟发生一次,影响三分之一的妇女和50岁以上的五分之一的男性。早期发现处于危险患者的早期发现促进了有效且良好的预防性干预措施,从而减少了主要骨质骨质骨折的发生率。在这项研究中,我们提出了一个自动系统,用于鉴定计算机断层扫描图像上椎骨压缩性骨折,该系统通常是主要骨质疏松相关骨折的未诊断前体。该系统集成了脊柱的紧凑3D表示,利用卷积神经网络(CNN)进行脊髓检测和序列3D体系结构的新型端到端序列。我们评估了一些模型变体,这些模型变体利用了不同的表示和分类方法,并提出了一个框架,结合了一个模型的集合,这些模型在曲线下(AUC)下具有0.955区域的患者级裂缝识别,并在大型数据集中验证了最新的结果。该系统提出的潜力有可能支持骨质疏松症的临床管理,改善治疗途径,并改变我们这一代最繁重的疾病之一的过程。

An osteoporosis-related fracture occurs every three seconds worldwide, affecting one in three women and one in five men aged over 50. The early detection of at-risk patients facilitates effective and well-evidenced preventative interventions, reducing the incidence of major osteoporotic fractures. In this study, we present an automatic system for identification of vertebral compression fractures on Computed Tomography images, which are often an undiagnosed precursor to major osteoporosis-related fractures. The system integrates a compact 3D representation of the spine, utilizing a Convolutional Neural Network (CNN) for spinal cord detection and a novel end-to-end sequence to sequence 3D architecture. We evaluate several model variants that exploit different representation and classification approaches and present a framework combining an ensemble of models that achieves state of the art results, validated on a large data set, with a patient-level fracture identification of 0.955 Area Under the Curve (AUC). The system proposed has the potential to support osteoporosis clinical management, improve treatment pathways, and to change the course of one of the most burdensome diseases of our generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源