论文标题
确切的混合构件凸式编程公式,用于最佳水网络设计
Exact Mixed-integer Convex Programming Formulation for Optimal Water Network Design
论文作者
论文摘要
在本文中,我们考虑了规范的水网络设计问题,该问题包含非凸的潜在损失功能和成本不同的离散阻力选择。传统上,为了解决这个问题的非概念,已经应用了潜在损失限制的放松以产生更可拖延的混合构成凸面计划(MICP)。但是,对于完整的非凸物理学,针对这些放松问题的设计解决方案可能是不可行的。在本文中,结果表明,实际上,可以将原始的混合企业非Convex程序完全按照MICP重新进行重新构建。从先前用于证明非线性网络设计可行性的凸面程序开始,强大的二元性被调用以构建一种嵌入所有物理约束的新颖的,凸原始的偶对偶的系统。然后,将增强此凸系统以形成原始设计问题的精确MICP公式。使用这种新颖的MICP作为基础,开发了一种全球优化算法,利用启发式方法,外部近似值和可行性切割平面,用于不可行的设计。最后,将算法与先前基于放松的水网络设计中的算法进行了比较,与文献的许多标准基准实例相比。
In this paper, we consider the canonical water network design problem, which contains nonconvex potential loss functions and discrete resistance choices with varying costs. Traditionally, to resolve the nonconvexities of this problem, relaxations of the potential loss constraints have been applied to yield a more tractable mixed-integer convex program (MICP). However, design solutions to these relaxed problems may not be feasible with respect to the full nonconvex physics. In this paper, it is shown that, in fact, the original mixed-integer nonconvex program can be reformulated exactly as an MICP. Beginning with a convex program previously used for proving nonlinear network design feasibility, strong duality is invoked to construct a novel, convex primal-dual system embedding all physical constraints. This convex system is then augmented to form an exact MICP formulation of the original design problem. Using this novel MICP as a foundation, a global optimization algorithm is developed, leveraging heuristics, outer approximations, and feasibility cutting planes for infeasible designs. Finally, the algorithm is compared against the previous relaxation-based state of the art in water network design over a number of standard benchmark instances from the literature.