论文标题

认知学习辅助多的多安滕纳通信

Cognitive Learning-Aided Multi-Antenna Communications

论文作者

Elbir, Ahmet M., Mishra, Kumar Vijay

论文摘要

认知通信已成为增强,适应和发明超越常规无线网络的新工具和功能的有前途的解决方案。深度学习(DL)对于实现认知系统的基本特征至关重要,因为其快速预测性能,适应性行为和无模型结构。这些功能对于生成和处理大量数据的多人安德纳无线通信系统尤其重要。多个天线可以提供多重,多样性或天线增益,分别提高容量,位误差率或信噪比 - 加上噪声比率。在实践中,多多安特纳认知通信在数据复杂性和多样性,硬件复杂性和无线通道动态方面面临挑战。 DL解决方案(例如联合学习,转移学习和在线学习)在通信处理的各个阶段解决这些问题,包括多通道估计,混合波束成形,用户本地化和稀疏阵列设计。本文提供了各种基于DL的方法的概述,以将认知行为传授给多Antenna无线通信,以改善鲁棒性和适应环境变化的,同时提供令人满意的光谱效率和计算时间。我们从数据,学习和收发器体系结构的角度讨论DL设计挑战。特别是,我们建议量化学习模型,数据/模型并行化和分布式学习方法,以应对上述挑战。

Cognitive communications have emerged as a promising solution to enhance, adapt, and invent new tools and capabilities that transcend conventional wireless networks. Deep learning (DL) is critical in enabling essential features of cognitive systems because of its fast prediction performance, adaptive behavior, and model-free structure. These features are especially significant for multi-antenna wireless communications systems, which generate and handle massive data. Multiple antennas may provide multiplexing, diversity, or antenna gains that, respectively, improve the capacity, bit error rate, or the signal-to-interference-plus-noise ratio. In practice, multi-antenna cognitive communications encounter challenges in terms of data complexity and diversity, hardware complexity, and wireless channel dynamics. DL solutions such as federated learning, transfer learning and online learning, tackle these problems at various stages of communications processing, including multi-channel estimation, hybrid beamforming, user localization, and sparse array design. This article provides a synopsis of various DL-based methods to impart cognitive behavior to multi-antenna wireless communications for improved robustness and adaptation to the environmental changes while providing satisfactory spectral efficiency and computation times. We discuss DL design challenges from the perspective of data, learning, and transceiver architectures. In particular, we suggest quantized learning models, data/model parallelization, and distributed learning methods to address the aforementioned challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源