论文标题

以几种不同的方式形成羊群?绵羊组合学的问题

In how many distinct ways can flocks be formed? A problem in sheep combinatorics

论文作者

Langner, Johanna, Witek, Henryk A.

论文摘要

在这篇简短的论文中,我们扩展了严格订单多项式$ω_{p}^{\ circ}(n)$的概念,该$枚举了严格的订单保留地图$ ϕ:P \ rightarrow \ rightarrow \ boldsymbol {n} $ for a Poset $ p $, $ \ text {e} _ {p}^{\ circ}(n,z)$,该$枚举了电源元素的类似地图,集合设置$ \ mathcal {p}(p)$。手头的问题立即减少了$ p $的子库的列举线性扩展的问题。我们表明,对于$ q \ subset p $,给定的线性扩展$ v $ $ q $都可以与唯一的线性扩展$ w $ $ p $相关。 The number of such linear extensions $v$ (of length $k$) associated with a given linear extension $w$ of $P$ can be expressed compactly as $\binom{\text{del}_{P}(w)}{k}$, where $\text{del}_{P}(w)$ is the number of deletable elements of $w$ defined in the text.因此,扩展的严格订单多项式$ \ text {e} _ {p}^{\ circ}(n,z)$可以表示为$ \ text {e} _ {p}^{\ circ}(n,z)= \ sum_ {w \ in \ mathcal {l}(p)} \ sum_ {k = 0}^{p } \ binom {\ text {del} _ {p}(w)} {p-k} \ binom {n+\ text {des}}(w)} {k} z^{k^{k} $。派生方程式可以用于解决以下组合问题:考虑一个$ p $ shepherds的社区,其中一些人通过主批准关系连接(表示为poset $ p $)。每天早晨,牧羊人的$ k $出去,每个人都羊群一群绵羊。社区传统规定,这些$ k $牧羊人中的每一个都至少要放牧,最多只能牛皮,而学徒总是比他的主人(或他的主人的主人等)更少的绵羊。通过以几种方式形成羊群?严格的订单多项式回答了所有$ p $牧羊人上班的情况,而扩展的严格订单多项式认为,一些牧羊人决定休假一天的所有情况。

In this short paper, we extend the concept of the strict order polynomial $Ω_{P}^{\circ}(n)$, which enumerates the number of strict order-preserving maps $ϕ:P\rightarrow\boldsymbol{n}$ for a poset $P$, to the extended strict order polynomial $\text{E}_{P}^{\circ}(n,z)$, which enumerates analogous maps for the elements of the power set $\mathcal{P}(P)$. The problem at hand immediately reduces to the problem of enumeration of linear extensions for the subposets of $P$. We show that for every $Q\subset P$ a given linear extension $v$ of $Q$ can be associated with a unique linear extension $w$ of $P$. The number of such linear extensions $v$ (of length $k$) associated with a given linear extension $w$ of $P$ can be expressed compactly as $\binom{\text{del}_{P}(w)}{k}$, where $\text{del}_{P}(w)$ is the number of deletable elements of $w$ defined in the text. Consequently the extended strict order polynomial $\text{E}_{P}^{\circ}(n,z)$ can be represented as $ \text{E}_{P}^{\circ}(n,z)=\sum_{w\in\mathcal{L}(P)}\sum_{k=0}^{p}\binom{\text{del}_{P}(w)}{p-k}\binom{n+\text{des}(w)}{k}z^{k}$. The derived equation can be used for example for solving the following combinatorial problem: Consider a community of $p$ shepherds, some of whom are connected by a master-apprentice relation (expressed as a poset $P$). Every morning, $k$ of the shepherds go out and each of them herds a flock of sheep. Community tradition stipulates that each of these $k$ shepherds will herd at least one and at most $n$ sheep, and an apprentice will always herd fewer sheep than his master (or his master's master, etc). In how many ways can the flocks be formed? The strict order polynomial answers this question for the case in which all $p$ shepherds go to work, and the extended strict order polynomial considers also all the situations in which some of the shepherds decide to take a day off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源