论文标题

分形颗粒在分形流体中的扩散

Diffusion of Fractal Particles in a Fractal Fluid

论文作者

Heinen, Marco

论文摘要

通过动态蒙特卡洛模拟研究了渗透量的非重叠分形颗粒的异常短期自扩散$ 1.67(2)$。如Phys中报道的。莱特牧师。 115,097801(2015),这些粒子形成的无序相是分形空间中不合同性,同质和单分散的流体。在热力学平衡中粒子扩散期间,平均平方化学位移随着非线性时间功率而增加,短时间内的指数为0.96(1)$,长时间为0.63(1)$。在有限的堆积分数下,最近的邻居颗粒之间的空间障碍导致了一个亚延伸的状态,从而将短期异常扩散与长期异常扩散分开。及时观察到粒子定位,以使$ \ sim 60 \%$及更高的包装分数及时观察到。

Anomalous short- and long-time self-diffusion of non-overlapping fractal particles on a percolation cluster with spreading dimension $1.67(2)$ is studied by dynamic Monte Carlo simulations. As reported in Phys. Rev. Lett. 115, 097801 (2015), the disordered phase formed by these particles is that of an unconfined, homogeneous and monodisperse fluid in fractal space. During particle diffusion in thermodynamic equilibrium, the mean squared chemical displacement increases as a nonlinear power of time, with an exponent of $0.96(1)$ at short times and $0.63(1)$ at long times. At finite packing fractions the steric hindrance among nearest neighbor particles leads to a sub-diffusive regime that separates short-time anomalous diffusion from long-time anomalous diffusion. Particle localization is observed over eight decades in time for packing fractions of $\sim 60\%$ and higher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源