论文标题

在$ n $ -Slice代数和相关代数上

On $n$-slice Algebras and Related Algebras

论文作者

Guo, Jin Yun, Xiao, Cong, Lu, Xiaojian

论文摘要

$ n $ -Slice代数作为较高维表示理论中的路径代数的概括。在本文中,我们通过其$(n+1)$ - 预注射式代数和其二次二重奏的琐碎扩展来提供$ n $ -Slice代数的分类。一个人总是可以将tame $ n $ -slice代数与$ \ mathrm {gl}的有限子组的mckay颤抖联系起来(n+1,\ mathbb c)$。在$ n = 2 $的情况下,我们描述了与$ 2 $ -Slice代数的关系,与有限的Abelian子组的McKay Quiver相关的$ \ MATHRM {SLRM {SL}(3,\ Mathbb c)$以及从嵌入$ \ MATHRM {$ \ MATHRM {2,$ {2,\ bb c C)获得的有限亚组$ \ mathrm {sl}(3,\ mathbb c)$。

The $n$-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of $n$-slice algebras via their $(n+1)$-preprojective algebras and the trivial extensions of their quadratic duals. One can always relate tame $n$-slice algebras to the McKay quiver of a finite subgroup of $\mathrm{GL}(n+1, \mathbb C)$. In the case of $n=2$, we describe the relations for the $2$-slice algebras related to the McKay quiver of finite Abelian subgroups of $\mathrm{SL}(3, \mathbb C)$ and of the finite subgroups obtained from embedding $\mathrm{SL}(2, \mathbb C)$ into $\mathrm{SL}(3,\mathbb C)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源