论文标题
速度依赖性的自我互动暗物质subhaloes的质热核心崩溃的发作
The Onset of Gravothermal Core Collapse in Velocity Dependent Self-Interacting Dark Matter Subhaloes
论文作者
论文摘要
已经提出,由于暗物质自我互动而引起的重生崩溃(即自相互作用的暗物质,sidm)可以解释自明的多样性(MW)卫星的中心动力质量。我们使用$ n $体体模拟MW-Analogue Halo的速度依赖性自我交织暗物质(VDDIDM),其中低速自散射横截面,$σ_{t}/m_ {x} $触及100 cm $ $^$ g $^$ g $我们将此模型配音为VD100模型。我们将该模拟的结果与使用不同暗模型(包括冷暗物质(CDM)和其他极端SIDM模型)的同一光环的模拟进行了比较。 VD100光环的质量与它们的CDM对应物非常相似,但是它们的最大圆速度值$ v_ {max} $的值明显更高。我们确定这些高$ v_ {max} $ subhaloes是质量范围内的对象[$ 5 \ times10^{6} $,$ 1 \ times10^{8} $] $ m_ \ odot $ at $ z = 1 $ c = 1 $,经历了肉汁热核心崩溃。这些崩溃的光环具有密度曲线,由单个功率定律描述至模拟的分辨率限制,并且该密度曲线的内坡度约为$ -3 $。解决不断减少的崩溃区域是具有挑战性的,需要定制的模拟才能在尺度上准确地对失控的不稳定性建模$ <1 $ kpc。
It has been proposed that gravothermal collapse due to dark matter self-interactions (i.e. self-interacting dark matter, SIDM) can explain the observed diversity of the Milky Way (MW) satellites' central dynamical masses. We investigate the process behind this hypothesis using an $N$-body simulation of a MW-analogue halo with velocity dependent self-interacting dark matter (vdSIDM) in which the low velocity self-scattering cross-section, $σ_{T}/m_{x}$, reaches 100 cm$^{2}$g$^{-1}$; we dub this model the vd100 model. We compare the results of this simulation to simulations of the same halo that employ different dark models, including cold dark matter (CDM) and other, less extreme SIDM models. The masses of the vd100 haloes are very similar to their CDM counterparts, but the values of their maximum circular velocities, $V_{max}$, are significantly higher. We determine that these high $V_{max}$ subhaloes were objects in the mass range [$5\times10^{6}$, $1\times10^{8}$] $M_\odot$ at $z=1$ that undergo gravothermal core collapse. These collapsed haloes have density profiles that are described by single power laws down to the resolution limit of the simulation, and the inner slope of this density profile is approximately $-3$. Resolving the ever decreasing collapsed region is challenging, and tailored simulations will be required to model the runaway instability accurately at scales $<1$ kpc.