论文标题

Rankine-液体的舒适条件,其能量取决于密度的空间和时间衍生物

Rankine--Hugoniot conditions for fluids whose energy depends on space and time derivatives of density

论文作者

Gavrilyuk, S. L., Gouin, Henri

论文摘要

通过使用汉密尔顿的固定作用原理,我们为连续培养基得出了控制方程和兰金 - 霍尼奥特条件,在该培养基中,特定能量取决于空间密度和时间密度衍生物。方程式的管理系统是质量,动量和能量的时间可逆的保护法分散系统。我们与来自保护法的Rankine-Hugoniot条件获得了额外的关系,并讨论了分散系统的冲击波不连续性。

By using the Hamilton principle of stationary action, we derive the governing equations and Rankine-Hugoniot conditions for continuous media where the specific energy depends on the space and time density derivatives. The governing system of equations is a time reversible dispersive system of conservation laws for the mass, momentum and energy. We obtain additional relations to the Rankine-Hugoniot conditions coming from the conservation laws and discuss the well-founded of shock wave discontinuities for dispersive systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源