论文标题

微观结构的还原模式与王图块合成的模式和广义有限元方法

Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method

论文作者

Doškář, M., Zeman, J., Krysl, P., Novák, J.

论文摘要

最近引入的一组Wang瓷砖的表示形式(对传统的周期性单元基于基于周期性单元的方法的概括)是一种减少具有随机异质微结构材料的几何模型,从而有效地合成了微结构实现。为了促进使用王瓷砖生成的完全解析的微观结构的宏观分析,我们利用瓷砖的预计特征特征开发了一个减少的订购建模方案。在离线阶段,受到计算均质化的启发,我们从压缩的微观结构表示中提取连续波动场,作为对一阶和二阶宏观宏观梯度代表的广义载荷的响应。在在线阶段,使用广义有限元方法的ANSATZ,我们将这些字段与粗糙的有限元离散化相结合,以创建针对给定的宏观问题的微观结构的简化模式。考虑到二维标量椭圆形问题,我们证明我们的方案在相对$ L_2 $和能量规范中的误差少于3%,与完全解决的问题相比,未知数仅为0.01%。可以通过局部完善宏观离散化和/或采用更多预计波动场来进一步提高准确性。最后,与基于标准快照的缩小订单方法不同,我们的方案处理宏观几何或负载的重大变化,而无需重新计算离线阶段,因为在没有任何有关宏观镜头问题的事先了解的情况下提取了波动场。

A recently introduced representation by a set of Wang tiles -- a generalization of the traditional Periodic Unit Cell based approach -- serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an efficient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by the computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the Generalized Finite Element Method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than a 3% error in both the relative $L_2$ and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike the standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge on the macroscopic problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源