论文标题

StyleDGPT:具有预训练的语言模型的程式化响应生成

StyleDGPT: Stylized Response Generation with Pre-trained Language Models

论文作者

Yang, Ze, Wu, Wei, Xu, Can, Liang, Xinnian, Bai, Jiaqi, Wang, Liran, Wang, Wei, Li, Zhoujun

论文摘要

在期望的样式下产生响应具有扩展开放域对话系统应用程序的巨大潜力,但由于缺乏并行数据以进行培训。在这项工作中,我们通过预先训练的语言模型探索了具有挑战性的任务,这些任务使各种自然语言任务取得了突破。为此,我们为微调步骤介绍了KL损失和样式分类器,以便以单词级别和句子级别的方式将响应生成转向目标样式。通过两个公共数据集进行的全面经验研究表明,我们的模型在风格一致性和上下文连贯性方面都可以显着优于最先进的方法。

Generating responses following a desired style has great potentials to extend applications of open-domain dialogue systems, yet is refrained by lacking of parallel data for training. In this work, we explore the challenging task with pre-trained language models that have brought breakthrough to various natural language tasks. To this end, we introduce a KL loss and a style classifier to the fine-tuning step in order to steer response generation towards the target style in both a word-level and a sentence-level. Comprehensive empirical studies with two public datasets indicate that our model can significantly outperform state-of-the-art methods in terms of both style consistency and contextual coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源