论文标题

将在线购物行为从化妆品到电子产品:一个分析框架

Categorizing Online Shopping Behavior from Cosmetics to Electronics: An Analytical Framework

论文作者

Roychowdhury, Sohini, Li, Wenxi, Alareqi, Ebrahim, Pandita, Akhilesh, Liu, Ao, Soderberg, Joakim

论文摘要

在数字营销时代,现代公司的成功因素是了解客户如何根据其在线购物模式进行思考和行为。尽管通过问卷调查和调查收集消费者见解的传统方法仍然构成了市场智能单元的描述性分析的基础,但我们提出了一个机器学习框架来自动化此过程。在本文中,我们提出了一个模块化的消费者数据分析平台,该平台处理用户和产品之间的会话级交互记录,以预测会话级别,用户旅程级别和客户行为特定的模式,导致购买活动。我们探索计算框架,并分别对两个大数据集和2GB和15GB的消费电子设备提供测试结果。提出的系统可实现97-99%的分类准确性,并为用户journey级别的购买预测提供了回忆,并将购买行为分为5个集群,两种数据集的购买率都会增加。因此,提出的框架可扩展到其他大型电子商务数据集,以获得自动化的购买预测和描述性消费者见解。

A success factor for modern companies in the age of Digital Marketing is to understand how customers think and behave based on their online shopping patterns. While the conventional method of gathering consumer insights through questionnaires and surveys still form the bases of descriptive analytics for market intelligence units, we propose a machine learning framework to automate this process. In this paper we present a modular consumer data analysis platform that processes session level interaction records between users and products to predict session level, user journey level and customer behavior specific patterns leading towards purchase events. We explore the computational framework and provide test results on two Big data sets-cosmetics and consumer electronics of size 2GB and 15GB, respectively. The proposed system achieves 97-99% classification accuracy and recall for user-journey level purchase predictions and categorizes buying behavior into 5 clusters with increasing purchase ratios for both data sets. Thus, the proposed framework is extendable to other large e-commerce data sets to obtain automated purchase predictions and descriptive consumer insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源