论文标题
基于元数据的儿童性虐待材料的检测
Metadata-Based Detection of Child Sexual Abuse Material
论文作者
论文摘要
儿童性虐待媒体(CSAM)是涉及未成年人的性阐释活动的任何视觉记录。 CSAM对受害者的影响与实际滥用的影响不同,因为分布永无止境,并且图像是永久的。基于机器学习的解决方案可以帮助执法迅速识别CSAM并阻止数字分销。但是,将CSAM图像收集到训练机器学习模型具有许多道德和法律限制,从而为研究开发带来了障碍。有了这样的限制,基于文件元数据的CSAM机器学习检测系统的开发发现了几个机会。元数据不是犯罪的记录,也没有法律限制。因此,基于元数据的检测系统投资可以提高CSAM发现率并帮助数千名受害者。我们为培训和评估用于CSAM识别的部署的机器学习模型提供了一个框架。我们的框架提供了针对智能对手的CSAM检测模型和使用开放数据的模型的指南。我们将提出的框架应用于基于文件路径的CSAM检测问题。在我们的实验中,表现最佳的模型是基于卷积神经网络,并且准确性为0.97。我们的评估表明,CNN模型可以通过对对抗修改的数据评估模型来积极地试图逃避检测。开放数据集的实验确认该模型可以很好地概括并且已经准备好部署。
Child Sexual Abuse Media (CSAM) is any visual record of a sexually-explicit activity involving minors. CSAM impacts victims differently from the actual abuse because the distribution never ends, and images are permanent. Machine learning-based solutions can help law enforcement quickly identify CSAM and block digital distribution. However, collecting CSAM imagery to train machine learning models has many ethical and legal constraints, creating a barrier to research development. With such restrictions in place, the development of CSAM machine learning detection systems based on file metadata uncovers several opportunities. Metadata is not a record of a crime, and it does not have legal restrictions. Therefore, investing in detection systems based on metadata can increase the rate of discovery of CSAM and help thousands of victims. We propose a framework for training and evaluating deployment-ready machine learning models for CSAM identification. Our framework provides guidelines to evaluate CSAM detection models against intelligent adversaries and models' performance with open data. We apply the proposed framework to the problem of CSAM detection based on file paths. In our experiments, the best-performing model is based on convolutional neural networks and achieves an accuracy of 0.97. Our evaluation shows that the CNN model is robust against offenders actively trying to evade detection by evaluating the model against adversarially modified data. Experiments with open datasets confirm that the model generalizes well and is deployment-ready.